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It is shown that the Gibbs relation remains invariant under linear transforma- 

tions which are used for reducing the kinetic matrix of reactions to a unitary 

one, and the matrix of a system chemical stability to a diagonal one. This 

makes it possible to consider new variables as thermodynamic parameters that 

specify the state of a relaxing mixture. Formulas for intermediate propagation 

velocities of small amplitude waves are obtained also for the limit case when 

the characteristic numbers of the relaxation matrix are of different orders of 

magnitude. It was found that the limit expressions may be represented by for- 
mulas for partly frozen and partly equilibrium speeds of sound in new thermo- 

dynamic variables. 

1. The Gibbr relrtionahip, Let us consider a mixture of gases in which N 
independent relaxation processes take place. The change of chemical composition of 

the mixture is defined by vector Q = (Qr, . . .) Qrv) of the completeness of reactions. 

We denote time by t and the vectors which specify the rate and affinity of chemical 

reaction by q’ = (q;, . . ., qN’) and o = (or,. . . , ON) ,respectively. The total 

derivative d / & with respect to time of the reaction completeness vector is obviously 

dqldt = q’ (1.1) 

This equation introduces in the mathematical description of the relaxing mixture N 

supplementary functions ql, . . ., qN. The components or, . . ., ON of chemical 
affinity vector play the part of adjoint thermodynamic variables. The closing ofEuler’s 

equations is achieved by Gibbs relationship which defines the increment of internal ener- 

gy e by [I, 21 de = odq - pdV + Tds (1.2) 

where p is the pressure, V is the specific volume, 2’ is the temperature, and s is the 
specific entropy. The first partial derivatives 

1,*-.‘&1, qi+l,..., 9N, v, 8 (1.3) 

expressed in terms of 9, V and s represent the N lacking equations of state of the 
matter. 

Let us consider the propagation of small amplitude waves in a quiescent mixture in a 
state of complete thermodynamic equilibrium. The equilibrium state of a system is de- 
fined by the equality o = 0 [l, 23. In that state vector q’ of the chemical reaction 
rate also vanishes. We select o, V and s as the independent thermodynamicvariables, 
and denote parameters of the quiescent mixture by zero subscripts. If an analytic depen- 
dence of vector q’ on 6.r is assumed, then in the system close to the equilibrium state 

93 



94 A. L. Ni and 0. S. Ryzho~ 

q’= -H(V,,s,)o+. . . (1.4) 

The kinetic matrix H = j] hilo I] f o reactions is positive definite and, in conformity with 
the Onzager reciprocity principle, it is also symmetric. We expand vector 0 in a series. 

For this we introduce in conformity with formulas (1.3) the constant vectors 

ev0 = (elITo, . . . , eNt~Oft a2e 
m-0 = - ( > a(l,av0 “j, s 

e s~ = (eh0, . . . , eibo), eiso = & ( ) 20 0 
q 
j’ 

v 

and matrix !2 = 11 (do, / G+yio)qj,V,S~~. Restricting the expansion to its principal terms, 
we have 

~=~(q-qo)+e~o(V-VO)-te~O(s-sO)+~.~ (1.5) 

The condition of thermodynamic stability of the system implies the positive definiteness 
of matrix Q Cl, 21. Since ao 

(~)~j,v,sz( “1r~Z7is)“j,P*S 
that matrix is also symmetric. 

Below we assume that in the un~r~r~d state the frozen afo and the e~i~brium alo 

speeds of sound are close to each other. We assume the difference between these to be 

proportional to ea2, where &, is a small positive parameter. It was shown in [3] the 

closeness of these two speeds of sound is ensured by subjecting the equations of state of 

the mixture to the following conditions: 

e+vo = - PO e;v#), qj, v, s = Ea Pi0 
i=f,,..,N 

where eivo is a dimensionless quantity of order unity. 
We restrict the analysis of the propagation of small per~rbations in the relaxing mix- 

ture to short waves which have either a plane, axis, or center of symmetry. We assume 

that the wave propagation velocity a, does not greatly differ from the frozen afo and 

equ~brium ueo pe s eds of sound. We introduce a moving system of coordinates to an 

element of the propagating wave, and denote by L a characteristic length in that SYS- 

them, We specify the width of the perturbed region by the small parameter A, and re- 

present time t and distance r from the origin of the Cartesian, cylindrical, or spherical 

system of coordinates in the form 

t = -& t’, t= aat.+ Lr’ (1.3 

To define deviations of unknown functions from their equilibrium values we introduce 
one more small parameter e. In conformity with [3] we consider that the velocity u of 
particles of the mixture and its thermodynamic parameters can be expressed as follows: 

v = eaav’, li = Vv, (1 + eV’) (1.3) 

P = PO (1 + a$)., T = T, (1 + ET’) 

The estimate of entropy increment yields the equality 

s = so (1 + e%,%‘) (1.3 
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When passing to dimensionless variables it is necessary to transform also the kinetic 

matrix H. Let its elements be 
hilo = qioQlo j&s 

$VoPo (1.10) 

where Xir has the meaning of the relaxation time of the i.-th element, which depends 

on the chemical affinity of the I-th element, and &a is a quantity of order unity. Since 

matrix 11 hilo 11 is symmetric, it is convenient to choose ‘Gil = zri. 

Now, substituting formulas (1.7) and (1.8) into Eq. (1.1) which determines the rate of 
chemical reactions, taking into consideration equalities (1.4) and (1. lo), retaining in the 
obtained relation only the principal terms, and omitting the prime at all dimensionless 

variables, we obtain [3] 
aq/ar = Fo, F’ = 11 filj = 11 Niho 11 (1.11) 

where the numerical parameters Ni, are the ratios of the macroscopic time T = L /a0 
to the relaxation time zil. 

Equality (1.5) can be similarly transformed for the expansion in series of the chemical 

affinity vector. First, we note that the entropy increment in formula (1.9) can be neg- 

lected, since its order of smallness is the next following that of the considered here. Pas- 
sing from the input matrix Q of chemical stability of the system to the matrix 

and allowing for the ordinal formulas (1.6), we obtain 

o=Gq+eV=Gq.-eev, e=cvo (1.12) 

where the prime at dimensionless variables is, as above, omitted,; it will be, henceforth, 

omitted everywhere. 
Since both matrices F and G are symmetric and positive definite, a matrix C and 

a unitary matrix IJ can be found so that the linear transformation 

qa = u-x*q, oz = U-fC-lo (1.13) 

in which C-l and U-l are reciprocal matrices, and C* is the transpose matrix of C , 

makes possible the reduction of the system of Eqs. (1.11) and (1.12) to the form [3] 

aq,idr = h, o2 = Dq, - ezv (e2 = U-lC-le) (1.14) 

where E denotes a unitary matrix and D is a diagonal matrix with elements dii equal 
to the characteristic numbers hi of the relaxation matrix R. 

The relaxation matrix R is nothing else than the product FG of the kinetic matrix F by 
matrix G of the system chemical stability. The reduction of the first of these two matrices to 

a unitary and of the second to a diagonal matrix considerably simplifies the mathema- 
tical analysis of wave motions. There arises, however, the question whether the compo- 
nents of vectors q2 and 02 can be used as the new thermodynamic parameters whichspe- 
cify the multicomponent relaxing mixture and play the same part as the components of 
vectors of reaction completeness and chemical affinity. Otherwise the linear transform- 
ations (1.13) must be treated as purely formal substitutions of variables, and the “true” 
vector of reaction completeness must satisfy the input relaxation equation (1.1) or Eq. 
(1.11) which follows from it. 
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The question posed above can be readily solved with the use of Gibbs relationship. 
We introduce in conformity with formulas (1.13) the auxiliary vectors 

q = (c-l)* 91, 0 = Cm, 

Let maths C = 11 ciz 11, C-l = 11 cilml 1 and (C-l)* = 11 (c-‘)~~*[. Since elements 
(cml)il* = cliV1, hence 

0 dq = i $, mi (c-l)i** &?U = 
, - 

i ~, Ci+@j,~ = o,c@, 
, = 

As shown by the linear transformations (1.13), the auxiliary vectors 

q1 = uq,, @1= U% 

Since U = I/ uil II is a unitary matrix, the elements of the inverse matrix U -& 11 uilP1 1 

are uil-l = z+i. This implies that 
N 

wh = 2 yiu&qzl = 
i, k=l 

i g, uil-hldq%i = Mq, 
, - 

Thus the form of the scalar product odq - o&q, in the right-hand side of formula 

(1.2) is not affected by the transition to new variables. This implies that the compon- 

ents of vectors q, and o2 may be taken as the new thermodynamic parameters that de- 
termine the state of the multicomponent relaxing mixture by attributing to them the part 

of components of vectors of reaction completeness and chemical affinity. The invariance 

of Gibbs formula with respect to linear transformations (1.13) virtually means that any 
of vectors q or qs play the part of the true vector of reaction completeness and any of 

vectors o or 0s may be considered as the true vector of chemical affinity. 
The relaxation matrix in transformed variables is R2 = ED = D, i.e. the charac- 

teristic numbers of the relaxation matrix are invariant with respect to linear transforma- 

tions, 

2, Intsrmedfate rpredt of 8ound. The missing equation that links the di- 

mensionless velocity of particles and the vector of the perturbed completeness of che- 

mical reactions was obtained in [3]. In variables defined in (1.13) it is of the form 

where the coefficients v = 1, 2, 3 relate, respectively, to waves with a plane, axis, 

or center of symmetry, and the constants m, and fit are defined by formulas 

v0* asp ( ) a0 - af* 
mo = 2a,z av,2 gj, 8’ Bf = T (2.2) 

Equations (1.14) and (2.1) form a closed system. The input dimensional quantities 

are used for calculating (a2p / 8V02)qj,r, and all thermodynamic derivatives. 

It is convenient to pass from Eqs. (1.14) and (2.1) to a single equation of order (N -/- 

1) for the particle velocity U. For this we, first, introduce the following constants [4 - 61: 
N 

UP0 = UfO + c (- l)m-p E ~Dm-~-1e2 (2.3) 

m=w1 
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whose dimension is that of speed, and 61 denotes the sum of all possible products of the 
characteristic numbers h,, . . ., ?-.N by I in each product. When p, =t N the sumin 

the right-hand side of formula (2.3) vanishes, hence aNo = afo. The Win’&? of that 
sum for any arbitrary u is most rapidly obtained by passing to the auxiliary diagonal 

matrix N 
D’p*’ = 

c 
(- Qm+ ?j$ Dm-t*-l (2.4) 

m-W-1 
whose elements are N 

a$“’ = 
c 

ON-m m-p-1 

m=t4-1 

(- i)““G.hi 
#f 

N-P-1 = - - 
uN-P 

(2.5) 

where the superscript (i) at the sum cl*(i) indicates that xi is excluded from the com- 

plete set of characteristic numbers h, . . .* hN , This immediately shows that formula 

&’ = - - = - _ c$‘-, 1 

ON % 

(2.6) 

is valid for elements d,,(O) of matrix DON . 
Substituting equalities (2.4) and (2.6) in formula (2.3) that defines constants atLO, for 

the first ~0 we obtain 

For any three matrices Q1, Qz and Qs, whose product is W = QIQzQs, thee~ali~ 

W-1 = Qs-lQa-rQ1-l is valid. Hence the inverse matrix is 

D-l =: u-lC*G-‘CU 

Using the last relation and recalling formula e2 = U-lc-le, we can easily verify that 

the product e2D-Ie2 = eG-le. Since by the definition of matrix G the elements gir-’ 
of the inverse matrix G-1 are 

and the components of vector e obey conditions (1.6), the expressions for tcoo in terms 
of the input dimensional variables assume the form 

a00 = ato - -i&- 
“1 !?I (&io,* V, s (*)Gj, VP S (*)*j* V,_S 

i, 1~1 

This is nothing else than the e~i~brium speed of sound a, in the quiescent mixture 
[l, 21, The remaining constants CL~ satisfy the inequalities 

a,0 = a,, < alo < - - . < ‘&V-l,0 < @NO = af0 (2.7) 

as was strictly proved in [6]. 
We introduce now coefficients yN defined by formulae 

a, - a& = Ea2 y(P) a, (2.6) 
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In the limit cases of lo = 0 and p = N we have $0) = ‘ye and ~(~1 = yf , re- 
spectively. Using equalities (2.3) and (2.8) it is possible to reduce the system of Eqs. 

(1.14) and (2. l), after some very cumbersome calculations [6], to the following (N + 
1) st order equation : N 

c 
(- i)‘41crN-& (2 (E?noV - E,2y’E”‘) g + (2.9) 

p=o 

which defines the particle dimensionless velocity v. Here the thermodynamic coeffici- 
ent m. is specified by the first of formulas (2.2). 

The symmetric form of Eq. (2,9) makes it possible to interpret quantities are as the 
velocity of acoustic wave propagation. In fact, the coefficient at the derivative & / dr 
in the differential operator, appearing in braces in the left-hand side of the equation, 

contains two terms. The first of these depends on u ; its origin is due to that the velo- 
city of signal transmission varies with the wave amplitude [7], The second term is pro- 
portional to y(p), i. e. to the difference between the wave propagation velocity and the 
quantity al*0. The limit values a,, and aNO of that quantity, that correspond to indi- 
ces p = 0 and p = iv are equal, respectively, to the equilibrium GO and frozen ato 

speeds of sound in the quiescent mixture. Both are thermodynamic derivatives which are 

determined by the equations of state of the medium and are in no way related to there- 

laxation matrix R. When 0 ( p < N expressions for aiio contain also the character- 

istic numbers h,, . . ., AN of that matrix, which depend, in particular, on the relaxa- 
tion times ‘Gil. 

When y(p) = 0, the propagation velocity of small oscillations a0 = aPo. Thismeans 
that quantities aM play the part of intermediate velocities at which waves may propa- 

gate in the perturbed flow zone with small variations of mixture parameters. As shown 

by inequalities (2.7), when 0 < p, < N these intermediate velocities up0 are strictly 
confined to the interval between the frozen and equilibrium speeds of sound. 

The presented reasoning does not in any way imply that the propagation velocity of 

sigrns& in a relaxing mixture must necessarily be equal to one of the quantities a;,,. It 
was shown in [l, 2, 71 that the translation velocity a, of small perturbations in the pre- 

sence of chemical reactions depends on the wave length and varies continuously from 

the equilibrium a,,, to the frozen afo speed of sound. These results make it, however, 

possible to assert that perturbations will cluster around those which propagate at veloci- 

ties oPo. 
The effect of intermediate speeds of sound becomes particularly clear after consider- 

ing the following particular case. Let us assume that the wave propagation velocity as 

is exactly equal aMO, then y( M) = 0. We impose on the characteristic numbers of the 

relaxation matrix the conditions 

h 11 * - -7 AM < 1, 1 < ~M+I, . * -7 AN (2.10) 

The inequalities (2.10) show that “elements” q21, . . . , qzM vary very slightly, while 
elements %,M+l, . l -, q3N relax at the same time in a nearly equiponderant manner. 

The greatest of all sums in Eq. (2.9) is (J,+.M followed by y,~-,+f_~ and (JN-wtl. Their 

first approximations can be presented as 
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UN-M = UN-M-~ = 

N>/mkf+1 

UN-M+l = 
N%iXtf+l Ill=1 

We assume that sums oN_,+a and UN-,u+i are of the same order. We retain in Eq. 
(2.9) only the principal terms and, as the result, obtain 

We specify the relations M 

mljE--, 
o&f0 - oaf-l, 0 h 

%UO c 
,=A 

m=l 

between the small parameters .and define the effective Reynolds number by 

&* = 
[ 

%+I, 0 - %zO 

%fo - %-1, 0 n&l~~~ h,nl 
m=l 

The jV - fold integration of Eq. (2.11) yields 

(2.11) 

(2.12) 

This clearly implies that in chemically active mixtures the effect of quasi-equilibri- 
um “reactions” taking place at rates proportional to the characteristic numbers 1 < 

?L M+i, . . ., hN is the same as that of viscosity and thermal conductivity of inert gases, 
If inequalities (2.10) hold, the fastest relaxing elements that reach the equilibriumstate 

are hM+l, - - -, qzzIv which are linear combinations of all components ql, . . ., qiv 
of the input vector of chemical reaction completeness. In other words, the equilibrium 
state is successively reached not by components of that vector but by their combinations 

defined by the first of formulas (1.13). 

Let us now determine the first approximation of the intermediatevelocity CSM~ of pro- 
pagation of small perturbations in the quiescent mixture. We recall formula (2.5) which 
defines elements dii(M) of the auxiliary diagonal matrix D(M). The principal termsof 
these elements are 

(-I!,?‘= _ 2 + for 1<i<M, (2.13) 

n&u+ 1 
n 

(p’= _+ 29 :for M+l<i\<N 
2 

We substitute formulas (2.4) and (2.13) into (2.3) and obtain 
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We assume that the order of magnitude of the ratio esla / h, is unity. Then by virtue of 
inequalities (2.10) the sum N 

c 
-&1* l=i,...,M 

n=M+l 
n 

The final form of the exoression for the interme~ate velocity of small oscillation pro- 

pagation is 

(2.14) 

Pressure p may be considered as a function of specific volume V,entropy s and such 

N quantities from the sequence pa, . . ., qBH and ozl, . . . , 0~ which do not con- 
tain conjugate ones. Such selection of inde~ndent variables can be achieved by 2N 
different means. 

We introduce the M-fold frozen and (N - M) -fold equilibrium speeds of sound 

&!) = [( p)E;ms,, Sr’ 

where P = 1 I V is the density and the superscript at the t~erm~yna~c derivatives 
indicates that the first M components of vector qz of reaction completeness and the last 

N--M components of vector o2 which specifies chemical affinity are taken as inde- 

pendent variables. In conformity with &he above j = 1, . . ., M and k = M $- 1, 
. . ., N. Obviously 

with respect to p , for the quiescent mixture we have 

Using the second of Eqs. (1.14) we immediately obtain 

since in the considered approximation the density increment is P = u [3]. The simp- 

lest way of determining the derivatives (8~ / dpzn~)~zi,v, s is to recall the definitionof 

the auxiliary vector qi 
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and similarly 

v, *cc-%* = 

We collect together the obtained result&and using equalities (1.6), present these in the 

form 
N 

PO C-8 - 
gg.. v, 8 a %I0 

r.G&~e, = - 8, PO eBn 
I, my1 %I0 

With allowance for the last equality, formula (2.15) can be written in the form 

N 

(a($;;)2 = $0 - %2voPo c e2n2 

n=M+l I, (2.16) 

The second of formulas (2.2) shows that the rest a0 - qo - Ga, hence the compari- 

son of formulas (2.14) and (2.16) yields 

~Mo = a%: 

Thus, when the characterisitc numbers of the relaxation matrix R satisfy conditions 
(2. lo), the 1M -th intermediate velocity of small perturbation propagation in a chemi- 

cally active gas mixture is simply the M-frozen and the (N - M) -fold equilibrium 
speed of sound calculated in terms of variables 4s1, . . , q2~, 6)2.~+1, . . . , 02~. v and S. 

When the characteristic numbers are of the same order of magnitude, the intermedi- 
ate velocity of acoustic wave propagation is not defined by such simple expression, Ac- 

cording to the general formula (2.3) it depends not only on thermodynamic derivatives, 

but also on the rate of all chemical reactions that take place. In that case the input 

equation (2.1) may not be replaced by the simpler equation (2.12) and, consequently, 
the clustering of perturbations in wave packets at velocities aus does not have a clearly 

defined character. The considered wave packet moving at velocity CLM~ is also blurred. 
When all chemical reactions affect the perturbation field, which occurs when the charac- 
teristic numbers of the relaxation matrix do not greatly differ, the wave propagation pat- 

ternis of a dispersing character with a continuous dependence of velocity on frequency. 
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